
Technical trip report

The purpose of my visit at Space and Naval Warfare System Center
(SPAWAR) of San Diego supported by ONRIFO (grant #N00014-02-1-4010)
was to meet Dr. S.S. Sritharan in order to continue our joint research on
the controllability for the Navier–Stokes and magnetohydrodynamic (MHD)
equations and other related problems.

This research started during a previous visit at SPAWAR when we focused
on some problems concerning the MHD equations. These equations describe
the motion of a viscous incompressible conducting fluid in a magnetic field
and consist of a subtle coupling of the Navier–Stokes equations of viscous
incompressible fluid flow and the Maxwell equations of electromagnetic field.
In a first research project, we concerned ourselves with understanding the role
played by the internal hydrodynamic and magnetic forces in creating the dy-
namics of conducting fluids in magnetic fields. To this aim, we decoupled
the Navier–Stokes and Maxwell parts of the MHD equations on small time
interval in order to separate the hydrodynamic and magnetic effects. In this
way we obtained a splitting approximation scheme whose convergence repre-
sented the objective of our joint paper entitled ”Fluid–magnetic splitting of
the magnetohydrodynamic equations” which will appear in ”Theoretical and
Computational Fluid Dynamics”. The second theme we dealt with (before
my last visit) was the controllability for the MHD equations. The controlled
MHD equation (with boundary and initial conditions) we considered are the
following:
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∂y
∂t
− ν∆y + (y · ∇)y +∇p +∇

(1
2
B2

)

−(B · ∇)B = f + χωu in Ω× (0, T ),
∂B
∂t

+ η curl(curlB) + (y · ∇)B

−(B · ∇)y = χωv in Ω× (0, T ),

div y = 0, div B = 0 in Ω× (0, T ),

y = 0, B ·N = 0, (curl B)×N = 0 on ∂Ω× (0, T ),

y(·, 0) = y0, B(·, 0) = B0 in Ω,

where Ω is a bounded open set of IR3, ω is an open subset of Ω and T > 0
is a fixed time. Besides, y = (y1, y2, y3) : Ω × [0, T ] → IR3 is the ve-
locity vector field, p : Ω × [0, T ] → IR is the (scalar) pressure and B =
(B1, B2, B3) : Ω × [0, T ] → IR3 is the magnetic field. The vector functions
u = (u1, u2, u3) : Ω × [0, T ] → IR3 and v = (v1, v2, v3 : Ω × [0, T ] → IR3 are
controls distributed in ω, and χω is the characteristic function of ω. Roughly
speaking, the controllability result we obtained (together with V. Barbu and
T. Havârneanu) amounts to saying that the steady-state (stationary) solu-
tions of the MHD equations are locally controllable provided that they are
sufficiently smooth. That is, for such a steady-state solution, if the initial
data y0, B0 are sufficiently smooth and ”close” to this solution, then there
exist locally distributed (internal) controls u and v such that the correspond-
ing solutions of the MHD equations starting from these initial data reach the
steady-state solution in a fixed finite time. For the Navier–Stokes and Boussi-
nesq equations this result was previously established by O.Yu. Imanuvilov
and A.V. Fursikov. The proof is based on a fixed point argument (previously
used in the controllability of the Navier–Stokes equations) which reduces
our nonlinear situation to a linear one. The main ingredient in proving the
global controlability of the null solution of a linear version of (1) consists
of two Carleman type inequalities for the Stokes and dynamo equations (es-
timating their solutions in the entire domain by means of the restrictions
of these solutions on the subdomain on which the controls are distributed).
This was the stage of our joint research before my last appointment with Dr.
S.S. Sritharan.

The first objective we pursued during my last visit at SPAWAR (sup-
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ported by ONRIFO) was the study of the boundary controllability of the
steady-state solutions of the MHD equations. In this case the controls u and
v are distributed on a part σ of the boundary (and not in an interior subdo-
main ω of Ω as in the preceding case). The boundary controllability result
we established is the following: For a given sufficiently smooth steady-state
solution of the MHD equations, if the initial data are sufficiently smooth and
”close” to this solution, then there exist controls u and v distributed on a
given part σ of the boundary ∂Ω and corresponding solutions of the MHD
equations starting from these initial data and reaching the steady-state solu-
tion in a fixed finite time. The idea of the proof is to reduce the boundary
controllability problem to the internal controllability one (described before)
by a suitable extension of the initial data and the steady-state solution to
a larger domain. Besides the boundary controllability for the 3-dimensional
MHD equations, we established that internal and boundary controllability
results for the 2-dimensional MHD equations can be obtained by using the
same approaches as in the 3-dimensional case.

The first equations in (1) without the terms containing B and the equa-
tion div y = 0 (in Ω) form a controlled variant of the Navier–Stokes equa-
tions. Another objective we proposed was to establish the controllability of
the steady-state solutions of the Navier–Stokes equations but with other sig-
nificant boundary conditions (different from the no-slip boundary condition
satisfied by y in (1)). Besides, we concerned ourselves with obtaining the
controllability for both Navier–Stokes and MHD equations for more general
domains. (Some technical aspects forced us and other authors to restrict the
considerations to some special domains.) To this aim, we carefully studied
various ways to derive the needed Carleman inequality for the pressure (be-
cause this particular inequality requires additional hypotheses on the shape
of domain). Then, we advanced in the study of the controllability for the
Navier–Stokes with one of the two following slip boundary conditions:

(2) y ·N = 0,
3

∑

i,j=1
σijNjTi = 0 on ∂Ω for all T = (T1, T2, T3),

(3)
3

∑

j=1
σijNj = 0 on ∂Ω, i = 1, 2, 3,
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where N = (N1, N2, N3) is the exterior normal to the boundary, T = (T1, T2, T3)
is any tangent vector and

σij =
(

∂yi

∂xj
+

∂yj

∂xi

)

− pδij.

The boundary condition (3) corresponds to a free boundary (contact with
vacuum or with a region of given pressure). The boundary condition (2)
could correspond to the case when the outer region is filled by an inviscid
fluid with much greater density than the one filling Ω. Much of our attention
was payed to the contollability for the Navier–Stokes equations in domains
with free boundary.

We also discussed about Carleman type inequalities for the linearized
vorticity equations in connection with the observability problem for the vor-
ticity equations (obtained by applying ”curl” operator to the Navier–Stokes
equations).

Finally, we considered a hyperbolic version of the MHD equations (in fact,
a parabolic–hyperbolic coupling of the Navier–Stokes and Maxwell equations)
arising in the mathematical description of the ionosphere. We drew up a
project of studying these equations (the mathematical setting and analysis,
controllability etc.).

The research problems we studied were motivated by the control theo-
retic challenges in variational data assimilation of METOC (meteorology–
oceanography) and also in space weather. This visit we paid particular at-
tention to the mathematically difficult interface (free boundary) problems
which arise in ocean–atmospheric, atmospheric–ionospheric and ionospheric–
magnetospheric coupling assimilations. Coupled assimilation is at the fore-
front of earth and space weather prediction in DoD these days. Another re-
lated technology area that would potentially benefit by our research is active
heating of the ionospheric auroral regions. Example of such projects includes
the well known HAARP (high frequency active auroral research program) at
Alaska. Here the challenge is to heat the ionospheric electrojet with high
frequency electromagnetic waves to generate extremely low frequency waves.

April 30, 2002 Prof. Cătălin Popa
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